Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0848120150400040211
International Journal of Oral Biology
2015 Volume.40 No. 4 p.211 ~ p.216
Ryanodine Receptor-mediated Calcium Release Regulates Neuronal Excitability in Rat Spinal Substantia Gelatinosa Neurons
Park A-Reum

Chun Sang-Woo
Abstract
Nitric Oxide (NO) is an important signaling molecule in the nociceptive process. Our previous study suggested that high concentrations of sodium nitroprusside (SNP), a NO donor, induce a membrane hyperpolarization and outward current through large conductances calcium-activated potassium (BKca) channels in substantia gelatinosa (SG) neurons. In this study, patch clamp recording in spinal slices was used to investigate the sources of Ca©÷+ that induces Ca©÷+-activated potassium currents. Application of SNP induced a membrane hyperpolarization, which was significantly inhibited by hemoglobin and 2-(4-carboxyphenyl) -4,4,5,5- tetramethylimidazoline-1-oxyl-3-oxide potassium salt (c-PTIO), NO scavengers. SNP-induced hyperpolarization was decreased in the presence of charybdotoxin, a selective BKca channel blocker. In addition, SNP-induced response was significantly blocked by pretreatment of thapsigargin which can remove Ca©÷+ in endoplasmic reticulum, and decreased by pretreatment of dentrolene, a ryanodine receptors (RyR) blocker. These data suggested that NO induces a membrane hyperpolarization through BKca channels, which are activated by intracellular Ca©÷+ increase via activation of RyR of Ca©÷+ stores.
KEYWORD
substantia gelatinosa neuron , nitric oxide , calcium release , ryanodine receptor , patch clamp
FullTexts / Linksout information
 
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI) KoreaMed